Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 287
1.
Microb Cell Fact ; 23(1): 108, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609965

BACKGROUND: Microbial cell surface display technology allows immobilizing proteins on the cell surface by fusing them to anchoring motifs, thereby endowing the cells with diverse functionalities. However, the assessment of successful protein display and the quantification of displayed proteins remain challenging. The green fluorescent protein (GFP) can be split into two non-fluorescent fragments, while they spontaneously assemble and emit fluorescence when brought together through complementation. Based on split-GFP assembly, we aim to: (1) confirm the success display of passenger proteins, (2) quantify the number of passenger proteins displayed on individual cells. RESULTS: In this study, we propose two innovative methods based on split-green fluorescent protein (split-GFP), named GFP1-10/GFP11 and GFP1-9/GFP10-11 assembly, for the purpose of confirming successful display and quantifying the number of proteins displayed on individual cells. We evaluated the display efficiency of SUMO and ubiquitin using different anchor proteins to demonstrate the feasibility of the two split-GFP assembly systems. To measure the display efficiency of functional proteins, laccase expression was measured using the split-GFP assembly system by co-displaying GFP11 or GFP10-11 tags, respectively. CONCLUSIONS: Our study provides two split-GFP based methods that enable qualitative and quantitative analyses of individual cell display efficiency with a simple workflow, thus facilitating further comprehensive investigations into microbial cell surface display technology. Both split-GFP assembly systems offer a one-step procedure with minimal cost, simplifying the fluorescence analysis of surface-displaying cells.


Membrane Proteins , Ubiquitin , Green Fluorescent Proteins/genetics , Cell Membrane , Cell Surface Display Techniques
2.
Nat Commun ; 15(1): 3267, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627361

In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.


Hydroxybutyrates , Polyhydroxybutyrates , Polysaccharides , Starch , Acetyl Coenzyme A/metabolism , Starch/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , NADP/metabolism , Biotransformation
3.
iScience ; 27(4): 109503, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38591007

Microinjecting yeast cells has been challenging for decades with no significant breakthrough due to the ultra-tough cell wall and low stiffness of the traditional injector tip at the micro-scale. Penetrating this protection wall is the key step for artificially bringing foreign substance into the yeast. In this paper, a yeast cell model was built by using finite element analysis (FEA) method to analyze the penetrating process. The key parameters of the yeast cell wall in the model (the Young's modulus, the shear modulus, and the Lame constant) were calibrated according to a general nanoindentation experiment. Then by employing the calibrated model, the injection parameters were optimized to minimize the cell damage (the maximum cell deformation at the critical stress of the cell wall). Key guidelines were suggested for penetrating the cell wall during microinjection.

4.
Biomed Phys Eng Express ; 10(4)2024 May 08.
Article En | MEDLINE | ID: mdl-38684143

Objectives. Current lung cancer screening protocols primarily evaluate pulmonary nodules, yet often neglect the malignancy risk associated with small nodules (≤10 mm). This study endeavors to optimize the management of pulmonary nodules in this population by devising and externally validating a Multimodal Integrated Feature Neural Network (MIFNN). We hypothesize that the fusion of deep learning algorithms with morphological nodule features will significantly enhance diagnostic accuracy.Materials and Methods. Data were retrospectively collected from the Lung Nodule Analysis 2016 (LUNA16) dataset and four local centers in Beijing, China. The study includes patients with small pulmonary nodules (≤10 mm). We developed a neural network, termed MIFNN, that synergistically combines computed tomography (CT) images and morphological characteristics of pulmonary nodules. The network is designed to acquire clinically relevant deep learning features, thereby elevating the diagnostic accuracy of existing models. Importantly, the network's simple architecture and use of standard screening variables enable seamless integration into standard lung cancer screening protocols.Results. In summary, the study analyzed a total of 382 small pulmonary nodules (85 malignant) from the LUNA16 dataset and 101 small pulmonary nodules (33 malignant) obtained from four specialized centers in Beijing, China, for model training and external validation. Both internal and external validation metrics indicate that the MIFNN significantly surpasses extant state-of-the-art models, achieving an internal area under the curve (AUC) of 0.890 (95% CI: 0.848-0.932) and an external AUC of 0.843 (95% CI: 0.784-0.891).Conclusion. The MIFNN model significantly enhances the diagnostic accuracy of small pulmonary nodules, outperforming existing benchmarks by Zhanget alwith a 6.34% improvement for nodules less than 10 mm. Leveraging advanced integration techniques for imaging and clinical data, MIFNN increases the efficiency of lung cancer screenings and optimizes nodule management, potentially reducing false positives and unnecessary biopsies.Clinical relevance statement. The MIFNN enhances lung cancer screening efficiency and patient management for small pulmonary nodules, while seamlessly integrating into existing workflows due to its reliance on standard screening variables.


Algorithms , Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Retrospective Studies , Male , Deep Learning , Female , Solitary Pulmonary Nodule/diagnostic imaging , Middle Aged , Reproducibility of Results , Aged , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Early Detection of Cancer/methods , China
5.
Food Chem ; 450: 139341, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38631206

The escalating use of pesticides on fruits and vegetables has raised concerns about potential health risks. Therefore, we developed a superhydrophilic resin/graphene oxide (SR/GO) with rich adsorption interactions using an eco-friendly synthetic approach. SR/GO demonstrated excellent hydrophilicity, ensuring optimal contact with aqueous sample matrices. The multiple adsorption interactions, including π-π conjugation, hydrogen bonding, and electrostatic adsorption, facilitated multi-pesticide residue co-extraction. The synthesized SR/GO was applied to a miniaturized centrifugation-accelerated pipette-tip extraction method, coupled with high-performance liquid chromatography. The optimized method exhibited low consumption (15.0 mg adsorbent), and high efficiency, with low detection limits (1.4-2.9 ng g-1) and high recoveries (75.3-113.0%). Water-compatible SR/GO, along with a miniaturized extraction process, showcases a potent analytical approach for pesticide residue analysis in fruits and vegetables. The significance of this method lies in its ability to ensure agricultural and food safety by using a low-cost and efficient multi-pesticide residue analytical strategy.

6.
Materials (Basel) ; 17(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38541390

Using fiber-reinforced polymer composite to replace metal in window frames has become a trend in aircraft manufacturing to achieve structural weight reduction. This study proposes an innovative winding compression molding process for continuous production of aircraft window frames using continuous carbon fiber-reinforced polyamide 6 thermoplastic composite filaments (CF/PA6). Through process parameter optimization, the production cycle of CF/PA6 composite window frames was controlled within 5 min, with an ultra-low porosity of 0.69%, meeting aviation application standards. Combining mechanical property experimental tests and finite element analysis, the mechanical performance of window frames made from three different materials was compared and evaluated. In the hoop direction, the mechanical performance of the continuous CF/PA6 thermoplastic window frames were significantly higher than that of chopped CF/epoxy compression molding window frames and aluminum alloy window frames. In the radial direction, the maximum strain occurred at the corner with the highest curvature of the frame due to the absence of fiber reinforcement, resulting in weak pure interlayer shear. Nevertheless, the thermoplastic CF/PA6 winding compression molded window frame still exhibited a high resistance to crack propagation and damage, as evidenced by the absence of any detectable sound of microdamage during testing with a 9000 N load. It is believed that achieving a further-balanced design of hoop-radial performance by appropriately introducing radial ply reinforcement can lead to a significant weight reduction goal in the window frame. The findings in this study provide an innovative process reference that can be universally applicable to high-speed and near-net-shape manufacturing without material waste of continuous fiber-reinforced thermoplastic composite products.

7.
Anal Chem ; 96(10): 4154-4162, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38426698

Metastasis is the leading cause of death in patients with breast cancer. Detecting high-risk breast cancer, including micrometastasis, at an early stage is vital for customizing the right and efficient therapies. In this study, we propose an enzyme-free isothermal cascade amplification-based DNA logic circuit in situ biomineralization nanosensor, HDNAzyme@ZIF-8, for simultaneous imaging of multidimensional biomarkers in live cells. Taking miR-21 and Ki-67 mRNA as the dual detection targets achieved sensitive logic operations and molecular recognition through the cascade hybridization chain reaction and DNAzyme. The HDNAzyme@ZIF-8 nanosensor has the ability to accurately differentiate breast cancer cells and their subtypes by comparing their relative fluorescence intensities. Of note, our nanosensor can also achieve visualization within breast cancer organoids, faithfully recapitulating the functional characteristics of parental tumor. Overall, the combination of these techniques offers a universal strategy for detecting cancers with high sensitivity and holds vast potential in clinical cancer diagnosis.


Biosensing Techniques , Breast Neoplasms , DNA, Catalytic , MicroRNAs , Humans , Animals , Female , MicroRNAs/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , DNA , Organoids , Biosensing Techniques/methods
8.
J Colloid Interface Sci ; 663: 697-706, 2024 Jun.
Article En | MEDLINE | ID: mdl-38432168

The unique superstructures electrode materials are of dominant significance for improving the performance of aqueous zinc-ion batteries (AZIBs). In this work, using nano MIL-96 (Al) as the precursor, a series of the layered (AlO)2OH·VO3 composite superstructures with different morphologies and V-oxide contents were prepared by combining calcination and hydrothermal synthesis. Among which, the HBC650·V4 superstructure is composed of the amorphous Al2O3/C, V-oxide, and the fluffy structure of (AlO)2OH, thus the superstructure can enhance the stability, increase the active center, and shorten Zn2+ diffusion, respectively. It is commendable that, the HBC650·V4 superstructure exhibits a high specific capacity of 180.1 mAh·g-1 after 300 cycles at 0.5 A·g-1. Furthermore, the capacity retention can be as high as 99.6 % after 5000 cycles at a high current density of 5.0 A·g-1, showing superior long cycling stability. Importantly, the in-situ XRD patterns and ex-situ analysis revealed the structural changes and reaction mechanisms of the HBC650·V4 superstructure during Zn2+ insertion/extraction. Therefore, the HBC650·V4 superstructure prepared using Al-MOF exhibits the advanced AZIBs performance. The preparation of nano-MOF into multifunctional superstructures through innovative strategies will be development trend in this field, which opens a new way to design AZIBs cathode materials.

9.
Biomater Sci ; 12(9): 2321-2330, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38488841

Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.


Cell-Penetrating Peptides , Doxorubicin , Drug Delivery Systems , Liposomes , Humans , Animals , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Cell-Penetrating Peptides/chemistry , Cell Line, Tumor , Liposomes/chemistry , Mice , Drug Carriers/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Nude , Peptides, Cyclic/chemistry , Peptides, Cyclic/administration & dosage
10.
Phytomedicine ; 128: 155375, 2024 Jun.
Article En | MEDLINE | ID: mdl-38507853

BACKGROUND: Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS: Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS: CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/ß-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION: CF and its ingredients may provide novel compounds for developing anti-OP drugs.


Cnidium , Drugs, Chinese Herbal , Fruit , Osteoporosis , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Osteoporosis/drug therapy , Cnidium/chemistry , Fruit/chemistry , Animals , Medicine, Chinese Traditional , Coumarins/pharmacology , Coumarins/therapeutic use , Phytochemicals/pharmacology , 5-Methoxypsoralen , Bone Remodeling/drug effects , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , RANK Ligand
11.
J Cancer ; 15(8): 2391-2402, 2024.
Article En | MEDLINE | ID: mdl-38495494

Lung cancer (LC) remains an extremely lethal disease worldwide, and effective prognostic biomarkers are at top priority. With the rapid development of high-throughput sequencing and bioinformatic analysis methods, the quest to characterize cancer transcriptomes continues to move forward. However, the integrated systematic analysis of lncRNA-miRNA-mRNA regulatory network in LC is lacking. In this study, we collected samples of cancer tissues and adjacent normal tissues from patients with lung cancer and conducted transcriptome and small RNA sequencing to identify differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs). The regulatory roles of miRNAs in LC were explained by functional analysis on DEM-targeted genes. The lncRNA-miRNA pairs, miRNA-mRNA pairs, and lncRNA-mRNA pairs were identified and combined to construct the interplay of lncRNA-miRNA-mRNA. We evaluated the prognostic value of selected lncRNA-miRNA-mRNA by Kaplan-Meier analysis. Finally, we analyzed the expression levels of selected DEM, DELs, and DEGs in lung cancer patients and healthy people to verify our findings. A total of 1492 DEGs, 12 DEMs, and 604 DELs were identified in LC patients. Based on the bioinformatic analysis and the regulatory mechanism of ceRNAs, 3 lncRNAs (GATA2-AS1, LINC00632, MIR99AHG), 1 miRNA (hsa-miR-21-5p) and 5 targeted genes (RECK, TIMP3, EHD1, RASGRP1 and ERG) were figured out first. Through further Kaplan-Meier analysis screening the prognostic value, we finally found the hub subnetwork (MIR99AHG-hsa-miR-21-5p-EHD1) by collating lncRNA-miRNA pairs, miRNA-mRNA pairs and lncRNA-mRNA pairs. As the key of ceRNA regulatory network, the expression of miRNA-21-5p in lung cancer patients was significantly higher than that in healthy people (P < 0.01), and its high expression was significantly associated with poor prognosis (P = 0.0025). Our study successfully constructed a MIR99AHG-hsa-miR-21-5p-EHD1 mutually regulatory network, suggesting the potential efficient biomarkers in LC.

12.
J Cancer ; 15(8): 2110-2122, 2024.
Article En | MEDLINE | ID: mdl-38495508

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

13.
Environ Sci Pollut Res Int ; 31(15): 22962-22975, 2024 Mar.
Article En | MEDLINE | ID: mdl-38418787

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated. The results showed that the sorption of Cu(II) on SDS-NZ was in accordance with the pseudo-second-order kinetic model with an equilibrium time of 4 h. The sorption behavior fitted Langmuir isotherm with a saturation sorption capability of 9.03 mg/g, which was three times higher than that of NZ-Y. The modification of SDS increases the average pore size of NZ-Y by 3.96 nm, which results in a richer internal pore structure and more useful sorption sites for Cu(II) sorption. There was a positive correlation between solution pH values and sorption capability of Cu(II) in the range of 3.0-6.0. With the ionic strength increased, the sorption capability of Cu(II) onto SDS-NZ first decreased and then increased, which may be attributed to competitive sorption and compression of the electronic layer. The desorption of Cu(II) on SDS-NZ was favored by the increase in SDS concentration and ionic strength and decrease in solution pH values. The application of SDS-NZ in runoff improved the leaching risk of Cu(II). After several cycles, the ability of reused SDS-NZ to efficiently adsorb most heavy metals was verified with removal rates above 99%.


Metals, Heavy , Water Purification , Zeolites , Copper/chemistry , Zeolites/chemistry , Surface-Active Agents , Rain , Water Purification/methods , Water Supply , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions
14.
Cell Discov ; 10(1): 13, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321019

Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.

15.
Plant Biotechnol J ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421616

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.

16.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38380572

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Antineoplastic Agents , Eleutherococcus , Neoplasms , Humans , Eleutherococcus/chemistry , Cardiotoxicity/drug therapy , Network Pharmacology , Doxorubicin/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Oxidative Stress , Apoptosis
17.
Plant J ; 118(2): 506-518, 2024 Apr.
Article En | MEDLINE | ID: mdl-38169508

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Infertility , Oryza , Crossing Over, Genetic , Point Mutation , Oryza/genetics , Plant Breeding
18.
Materials (Basel) ; 17(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-38204105

The mechanical properties and failure modes of concrete are controlled by its mesoscopic material composition and structure; therefore, it is necessary to study the deterioration characteristics of tunnel lining concrete under fire from a mesoscopic perspective. However, previous studies mostly analyzed the damage and failure process from a macro-homogeneous perspective, which has certain limitations. In this paper, a thermal-mechanical coupling test device was modified to simulate the state of concrete under tunnel fire conditions. Combined with CT technology, the macroscopic properties and mesoscopic characteristics of concrete were observed. Features were obtained, such as the change in compressive strength under fire, as well as mesoscopic deterioration characteristics. The damage variable D was defined to quantify mesoscopic damage, and the link between mesoscopic deterioration characteristics and macroscopic performance was established, which can be used to predict compressive strength loss through mesoscopic characteristics.

19.
Biotechnol Adv ; 70: 108294, 2024.
Article En | MEDLINE | ID: mdl-38013126

Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.


Carbon Dioxide , Carbon , Carbon/metabolism , Carbon Dioxide/metabolism , Autotrophic Processes , Carbon Cycle , Synthetic Biology
20.
Int Wound J ; 21(4): e14573, 2024 Apr.
Article En | MEDLINE | ID: mdl-38102858

Surgical site infections (SSIs) following cardiothoracic surgery can pose significant challenges to patient recovery and outcome. This systematic review and meta-analysis aim to identify and quantify the risk factors associated with SSIs in patients undergoing cardiothoracic surgery. A comprehensive literature search adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and based on the PICO paradigm was conducted across four databases: PubMed, Embase, Web of Science and the Cochrane Library, without any temporal restrictions. The meta-analysis incorporated studies detailing the risk factors for post-operative sternal infections, especially those reporting odds ratios (OR) or relative risks with 95% confidence intervals (CI). Quality assessment of the studies was done using the Newcastle-Ottawa Scale. Statistical analysis was executed using the chi-square tests for inter-study heterogeneity, with further analyses depending on I2 values. Sensitivity analyses were performed, and potential publication bias was also assessed. An initial dataset of 2442 articles was refined to 21 articles after thorough evaluations based on inclusion and exclusion criteria. Patients with diabetes mellitus have an OR of 1.80 (95% CI: 1.40-2.20) for the incidence of SSIs, while obese patients demonstrate an OR of 1.63 (95% CI: 1.40-1.87). Individuals who undergo intraoperative blood transfusion present an OR of 1.13 (95% CI: 1.07-1.18), and smokers manifest an OR of 1.32 (95% CI: 1.03-1.60). These findings unequivocally indicate a pronounced association between these factors and an elevated risk of SSIs post-operatively. This meta-analysis confirms that diabetes, obesity, intraoperative transfusion and smoking heighten the risk of SSIs post-cardiac surgery. Clinicians should be alert to these factors to optimise patient outcomes.


Cardiac Surgical Procedures , Surgical Wound Infection , Humans , Surgical Wound Infection/epidemiology , Surgical Wound Infection/etiology , Cardiac Surgical Procedures/adverse effects , Risk Factors
...